
NASA-TM-II2282

V 1-' " _/o o,7_y.:

Numerical Algorithms Group NAGWare

F77 Tools Evaluation

Terance L. Lam 1

D_,n_ 1_NII__Cl 1-131A T_p_mh_r 1001

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

Numerical Algorithms Group NAGWare

F77 Tools Evaluation

Terance L. Lam 1

Report RND-91-014 December 1991

NAS Systems Development Branch

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035

Numerical Algorithms Group NAGWare F77 Tools Evaluation

Terance L. Lain

Computer Sciences Corporation

Numerical Aerodynamic Simulation Division

NASA Ames Research Center

December 5, 1991

Abstract

This document discusses the evaluation of the Numerical Algorithms

Group's NAGWare F77 Tools (Beta Release 1, NASG401N) on a SGI 4D

workstation. Features of NAGWare F77 tools are discussed and compared

to the Information Techniques Inc. Fortran-lint 1 Fortran Source Code

Analyzer. A cost analysis and recommendations are included. It is

recommended that neither the NAGWare F77 Tools nor the IPT Fortan-Lint

be purchased due to the limited interest at NAS.

1.0 Introduction

The NAGWare F77 Tools are direct descents of the Toolpack tools which originated from

an idea suggested at the Jet Propulsion Laboratories in Pasadena, California, in the autumn

of 1978 [1]. The idea was to put together a comprehensive collection of mathematical

software development tools. This project was supported in the U.S.A. by the National

Science Foundation and the Department of Energy, and in the U.K. by the Science and

Engineering Research Council. The aims of the project were:

• To provide a suite of tools to assist in the production, testing, maintenance and

porting of medium sized mathematical software projects written in standard

conforming Fortran 77.

1 Fortran-lint is a registered trademark of Information Processing Techniques, Inc.

• To investigate the development of extensible programming support environments

built around integrated tool suites.

The present study performed an evaluation of the NAGWare F77 Tools, compared its

features with the IPT Fortran Source Code Analyzer, and determined which tool suite

would be most beneficial to the NAS community. Hopefully, these tools can be used to

help NAS in the development of truly portable Fortran 77 programs across different

computer platforms such as the Cray 2 supercomputers and the SGI 3 and SUN 4

workstations.

2.0 User Interface

The NAGWare F77 tools use the conventional UNIX 5 user interface. These tools employ

a set of scripts that hide any complexity of the tools. Default options have been chosen for

the scripts. Invoking a NAGWare F77 Tools script requires only a command line with the

script name followed by a list of the input files. Any necessary intermediate files are

generated automatically by the scripts as temporary files. Upon successful completion,

each input file is backed up to f'tle.orig and is replaced by the polished output.

3.0 Documentation

The NAGWare F77 Tools provide complete on-line manual pages and a 40-page manual

[1]. The manual includes a tutorial section which guides novice users through the tools.

Some examples in the tutorial were used in the evaluation process.

4.0 Installation

The NAGWare F77 tools came in as a tar tape. The contents of the software are organized

as in figure 1.

2 Cray is a registered trademark of Cray Research, Inc.

3 SGI is a registered trademark of Silicon Graphics, Inc.

4 SUN is a registered trademark of SUN Microsystems, Inc.

5 UNIX is a registered trademark of AT&T.

NAGWare_f77_tools

I.... bin

I.... scripts

I.... examples

I.... results

I.... test

I.... manl

Figure 1.

all executable

shell scripts calling the executable in bin

tutorial examples; should be accessible to users

results used for installation verification

installation test script

manual pal_es

NAGWare F77 Tools

The installation involved loading the tape using the standard tar procedure and moving the

executable to the appropriate directory (e.g./usr/local/bin). The complete installation

procedures were:

• cd/usr/loca!/bin; tar -xvf/dev/rst8

• for each shell script in NAGWare_f77_tools/scripts directory, modify the variable

toolexe as

toolexe="/usr/local/NAGWAre_f77/bin"

• add/usr/local/NAGWAre_f77/bin to the PATH environment

• add/usr/local/NAGWAre_f'/7/scripts to the PATH environment variable

• add/usr/local/NAGWAre_f77/manl to the MANPATH environment variable

• execute/usr/local/NAGWAre_f77/test/test_installation to verify the installation.

These installation procedures were relatively easy and succeeded at the first trial. An

installation script could have made installation easier, because changing the same variable in

all script files under NAGWare_f77_tools/scripts is more time consuming than changing

one environment variable in an installation script.

5.0 Functional Descriptions

The NAGWare F77 Tools are divided into three classes; editing tools, transformation tools

and analysis tools. Features of the NAGWare F77 Tools and their functionalities are

discussed below. Details of these tools can be found in the manual pages. Simple

examples are used to demonstrate the functionality of the NAGWare software in these

sections. Some of these examples are quoted from the NAGWare F77 Tools' User's

Guide.

5.1 Options File Editor

Nag_polopt is the NAGWare F77 Tools Polish Option File Editor. This menu-driven

editor is used to create a polish options file which is used by nag_polish for controlling the

appearance of all the transformation output. Figure 2 lists all control file options.

Basic Formatting Options

Margin Control

Re-labelling Format

CONTINUE Statement Insertion

Customization Options

Margin Control

Label Formatting

Declaration Line-up

Move FORMAT Statements

Sequence Number Format

Progress Trace

Error Message

Figure 2.

Conversions Options

Case Conversion

Include Files

FORMAT Conversion

Parameters

Blank Character

Comment input

Comment Decoration

Declaration Line-Up

Nag_polish Control Options

5.2 Transformation Tools

The transformation tools perform automatic conversions of Fortran 77 code. These tools

are particularly useful in source code restructuring and standardization.

5.2.1 Precision Transformation

The Arithmetic Precision Transformation tool, nag_apt, converts single precision programs

to double precision or vice versus. Two examples are shown below to demonstrate the

transformations and their results. Figure 3 is the original Fortran 77 program used in this

demonstration. This program contains implicitly and explicitly declared single precision

variables, single precision constraints, a single precision specific intrinsic function, and the

E format edit descriptor.

4

9000

9100

PROGRAM EXAMPLE1

REAL RADIUS, AREA, CIRCUM

PI = 3.14159

PRINT 9000

READ *, RADIUS

AREA = PI*RADIUS**2

CIRCUM = 2.*PI*RADIUS

PRINT 91000, CIRCUM, AREA, AMAXI(AREA, CIRCUM)

FORMAT ('INPUT RADIUS:')

FORMAT (CIRCUMFERENCE = ',FI0.6,' AREA = ', E12.6,' MAX = ' E12.6)

END

Figure 3. Example 1

Figure 4 is the output of a single-to-double precision transformation applied to

EXAMPLE1 in figure 3. Constants and variables such as PI and RADIUS etc. are

convened into double precision. AMAX1 has been changed to DMAX1 which is in double

precision format. The last change was the FORMAT statement which changed the E

descriptors to D descriptors.

PROGRAM EXAMPLE1

DOUBLE PRECISION PI

DOUBLE PRECISION RADIUS, AREA, CIRCUM

PI=3.14159D0

PRINT 9000

READ *, RADIUS

AREA = PI*RADIUS**2

CIRCUM = 2.D0*PI*RADIUS

PRINT 91000, CIRCUM, AREA, AMAXI(AREA,CIRCUM)

9000 FORMAT ('INPUT RADIUS:')

9100 FORMAT (CIRCUMFERENCE = ',FI0.6,' AREA = ', D12.6,' MAX = ', D12.6)

END

Figure 4. Example 1 after Single-to-Double Precision Transformation.

Figure 5 is the double-to-single precision transformation on EXAMPLE1 in figure 4. All

the double precision parameters are converted back to single precision. These two

programs were compiled and verified that the functioning was the same. Of course, the

output does not look the same as the original EXAMPLE1. The differences are the

program organization and additional comments. This transformation tool can be applied to

a group of software. The too automates the drudgery of an error-prone task.

PROGRAM EXAMPLE1

C .. Local Scalars ..

REAL AREA, CIRCUM,PI,RADIUS

C o •

C .. Intrinsic Functions ..

INTRINSIC AMAXI

C . .

PI = 3.14159

PRINT 9000

READ *,RADIUS

AREA = PI*RADIUS**2

CIRCUM = 2.*PI*RADIUS

PRINT 9100,CIRCUM, AREA, AMAXI(AREA,CIRCUM)

9000 FORMAT (' Input Radius:')

9100 FORMAT (' Circumference = ',FI0.6,' Area = ',D12.6,'

END

Max = ' D12.6)
t

Figure 5. Example 1 after Double to Single Precision Transformation.

5.2.2 Name Transformation

Nag_chname is the NAG F77 tools Fortran 77 name transformation tool. This tool

systematically changes names in the Fortran 77 source file(s) according to commands from

standard input or from an options control file. The control file (or standard input) is read

for change requests of the form

<names> <comments><strings><hol><fold> <pat> = <rep>,

where <names>, <comments>, <strings>, <hol>, <fold> are either t (true) or f (false)

indicating whether or not changes are to be applied to names, comments, strings, and

holleriths respectively. <fold> is the flag for specifying whether case folding is required.

<pat> is the replacement names or regular expression. Figure 6 is a log of the name change

transformation session invoked with the pl_opt option. The Options File Editor started up

and the control commands were entered. The original input f'de and the converted program

are shown in figure 7 and 8 respectively. The transformation successfully changed

SROTG and SAXPY to DROTG and DAXPY.

%nag_chname -po pl.opt example2.f

Command: ttttt SROTG = DROTG

Command: ttttt SAXPY = DAXPY

Command: EOF

Figure 6. Log of the Name Transformation Session.

PROGRAM EXAMPLE2

DOUBLE PRECISION X(2),Y(2)

DOUBLE PRECISION ALPHA,A,B,C,D

INTEGER N, INCX, INCY

EXTERNAL DROTG,DAXPY

CALL DROTG(A,B,C,D)

CALL DAXPY(N,ALPHA, X, INCX, Y, INCY)

END

Figure 7. Example 2

PROGRAM EXAMPLE2

DOUBLE PRECISION X(2),Y(2)

DOUBLE PRECISION ALPHA,A,B,C,D

INTEGER N, INCX, INCY

EXTERNAL SROTG,SAXPY

CALL SROTG(A,B,C,D)

CALL SAXPY(N,ALPHA, X, INCX, Y, INCY)

END

Figure 8. Example 2 after Nag_chname

5.2.3 Declaration Standardization

Nag_decs is the NAGWare Fortran 77 declaration standardization tool. This tool can

rebuild the declaration section of a program. It may also be used to declare all implicitly

typed variables. Figure 9 is the original source of EXAMPLE 3.

C

C

PROGRAM EXAMPLE3

This is a simple program to show how nag_decs works.

IMPLICIT DOUBLE PRECISION (D)

IMPLICIT CHARACTER*3 (A-C, E)

PARAMETER (F='TEST ')

INTEGER I,J

COMMON /FRED/ A,B,C,D,FI,F2,F3 /FRED 2/ T

/FRED/ is a common block

DIMENSION A(40)

COMPLEX C(19"3+i, -9:6,9)

CHARACTER*5 F1

DATA ITWO /2/

Another comment

I = ABS(K)

Comment in the code

PRINT *, SQRT(I), F, J

END

Figure 9. Example 3

In this example, nag_decs deleted then rebuilt the declarations as in figure 10. The output

program shows that all variables have been explicitly declared. The comment that occurred

in the declarations just after the common block declaration has been moved to the beginning

of the declaration section; this is necessary because the declarations in the input program are

deleted. All other comments retain their original position.

PROGRAM EXAMPLE3

C This is a simple program to show how nag_decs works.

C /FRED/ is a common block

C .. Parameters ..

CHARACTER*(*) F

PARAMETER (F='TEST')

C ..

C .. Scalars in Common ..

DOUBLE PRECISION D

REAL F2,F3,T

CHARACTER*3 B

CHARACTER*5 F1

C ,.

C .. Arrays in Common ..

COMPLEX C(19"3+I,-9:6,9)

CHARACTER*3 A(40)

C • .

C .. Local Scalars ..

INTEGER I, ITWO, J,K

C . .

C .. Intrinsic Functions .°

INTRINSIC ABS,SQRT

C .,

C .. Common blocks ..

COMMON /FRED/A,B,C,D,FI,F2,F3

COMMON /FRED2/T

C ,.

C .. Data statements ..

DATA ITWO/2/

C o.

C Another comment

I = ABS(K)

C Comment in the code

PRINT *,SQRT(I),F,J

END

Figure 10. Example 3 after Declaration Transformation.

5.2.4 Fortran 77 Pretty Printer

Nag_polish, called the "polisher," is the NAGWare F77 Tools pretty printer. This tool

reformats a Fortran 77 program according to a standard layout. A number of parameters

can be set by users to control the appearance of the reformatted program. A polish control

file may also be created using the nag_polopt command.

Users can configure almost every aspect of spacing within statements and between

statements. Indentation, re-labelling and the breaking of long statements into continuation

lines is handled automatically according to default or user supplied criteria. This tool can

optionallyaddlabelledCONTINUEstatementsto terminateeveryDO loop. Theposition
andlabellingof FORMATstatementscanalsobespecified.

I PROGRA M EXAMPLE4

DO 99 I =I, I0

J =I

99 CONTINUE

END

Figure 11. Example 4

I PROGRAM EXAMPLE4

DO 99 I =I, I0

J =I

99 CONTINUE

END

Figure 12. Example 4 Output

The input in figure 11 is transformed to figure 12 by nag__polish. The original program

was restructured into an easy to understand program using the default layout.

5.2.5 Fortran 77 Structuring Program

Nag_struct is the NAGWare F77 restructure tool. Its purpose is to rebuild the flow of

control, within each processed program unit, to a standardized form based on the

structuring algorithm described in [2].

The restructurer rebuilds the control flow of a program unit creating block IF constructs

wherever possible. It may also optionally create DO WHILE constructs. This tool also

makes Fortran 66 code look much like Fortran 77 and hence enhance the control flow of

the program.

PROGRAM EXAMPLE5

1 IF (A) THEN

PRINT *,B

IF (C)

PRINT *,C

GOTO 1

END IF

2 PRINT *,D

END

GOTO 2

Figure 13. Example 5

The following examples show how nag_struct improves the control flow of EXAMPLE

#5. Figure 14 is the output of invoking nag_struct with default structuring options. The

output has one GOTO statement eliminated. This has been achieved by negating the test in

theIF statementin line 3 of the input program,which is line 4 of theoutputprogram,and

makingablockIF.

10

PROGRAM EXAMPLE5

CONTINUE

IF (A) THEN

PRINT *,B

IF (.NOT.C) THEN

PRINT *,C

GO TO I0

END IF

END IF

PRINT *,D

END

Figure 14. Example 5 Restructured

with Default Options.

10

PROGRAM EXAMPLE5

DO WHILE (A)

PRINT *,B

IF (C) THEN

GO TO i0

ELSE

PRINT *,C

END IF

END DO

PRINT *,D

END

Figure 15. Example 5 Restructured

with -while Option

Figure 15 is nag_struct output invoked with the -while option. With this option, a more

elegantly structured program is produced by introducing the DO WHILE construct. But

this DO WHILE construct is not ANSI standard F77 and may not be acceptable to some

compilers.

5.3 Analysis Tools

The principal analysis tools verify Fortran 77 code against the ANSI standard and highlight

non-portable usage of Fortran 77 features. These analysis tools are extremely useful tools

in the verification of portable Fortran 77 programs.

5.3.1 Fortran 77 Portability Verifier

The Portability Verifier, nag__pfort, checks Fortran 77 source code against the ANSI

standard and reports on non-portable usage of Fortran 77 features. It checks for:

• conformance to the NAGWare F77 Tools language standard

• conformance to the ANSI Fortran 77 standard

• conformance to a portable subset of the ANSI Fortran 77 standard, PFORT-77

• correct inter-program-unit communication

• unsafe references.

10

The analysis is carded out in two stages. Firstly, conformance to the NAGWare F77 Tools

Fortran standard is checked (see manual page nag_Fortran77 for details). If this

preliminary check is satisfied, nag_pfort proceeds to portability analysis in which the

checks include additional Fortran 77 rules, conformance to PFORT-77, inter-program-unit

communications, and unsafe references (see manual page nag_pfort for details). The

second stage issues a portability report based on the PFORT-77 subset.

The Eagle Grid Generator Program was used in this analysis. The source consists of a

total of 24,087 line of Fortran 77 code. The portability analysis was invoked with default

options. Nag_pfort reported 20 informational messages, 109 warnings and 4 errors.

These messages are summarized in figure 16. These results concurred with the Flint

analysis and were verified legitimate.

Message Type # of Message Message

Informational 17 Conditional expression is constant

3 Logical IF expression is constant

94

15

Warning Unreferenced label

Unused common block

Error

Figure 16.

2 COMMON may only be initialized in BLOCK DATA

1 Unexpected end of file (in main program)

1 Syntax error

The Eagle Grid Generation Program Portability Analysis Summary

5.3.2 Call Tree Generator

Nag_fcalls, the call tree generator, prints the call graph of a Fortran 77 program. It also

optionally lists which routines call each routine. Figure 17 is the input to nag__fcalls while

Figure 18 is the output of the call tree analysis.

PROGRAM TEST SUBROUTINE A(B) SUBROUTINE C() SUBROUTINE X()

EXTERNAL A, X EXTERNAL B, C PRINT *, 'C CALLED' PRINT *, 'X CALLED'

CALL A(X) CALL C END END

END CALL B

END

Figure 17 Example 6

11

FCALL i - FORTRAN/77 Call Tree Printer

TEST ,'
A

C
X

Figure 18 Example 6 Nag_fcalls Output

This call-graph generation tool is very useful in software porting. This call-graph provides

a means for the programmer to understand the program structure before the program can be

compiled and executed. The call tree is verified functional, but there is one deficiency in

this tool. This call tree generator requires that all errors be corrected before the call-graph

can be generated. The Flint call tree generating software operates independently of the

syntax checker. It performs call tree generation at the best of its capability even when

syntax errors exist. This is an advantage of Fortran-lint over the NAGWare Tools.

6.0 IPT Fortran-lint versus NAGWare F77 Licensing Schemes

6.1 IPT Fortran-lint Licensing Schemes

As discussed in the [3], the IPT Fortran-lint's licensing scheme is based on the number of

CPUs per Auditor File which reside on a CPU or a file server. This auditor file restricts a

list of CPUs to access its utilities and the total number of concurrent Flint usage. For

instance, a 4-user and 200-CPU auditor file allows 4 concurrent users among the 200

CPUs with permission to access the utility. Any workstation whose name is not included

in this auditor file will be denied from accessing it. Figure 19 is a price list for Fortran-

lint.

Since NAS has approximately 150 SGI workstations, the "per CPU" licensing scheme will

cost NAS $585,000. The file server license scheme is a more feasible solution. To

accommodate services for 150 CPUs, a 200-CPU and 16-user auditor file is required. The

SPS will be used as the IPT Flint hosts. This license costs $21,900.

12

Number of CPUs 1 user 4 users 8 users 16 users 32 users

1

up

up

up
!

up

up

up

up

up

up

$3,900

to 5 $4,900

to8

to 12 $5,900

to16

to 25 $6,900

to 50 $8,900

to 100 $9,900

to 200 $11,900

to 300 $14,900

$7,900 $9,900 $14,900 $19,900

$8,900

$9,900 $11,900

$10,900 $12,900 $17,900

$12,900 $14,900 $19,900

$13,900 $15,900 $20,900

$14,900 $16,900 $21,900

$18,900 $20,900 $25,900

$25,900

$26,900

$30,900

Figure 19. Fortran-Lint Price Table (per auditor File)

An alternative offered by IPT is the SGI-Cray package. This license option, consisting of

six 4-user SGI file server licenses and a 16-user Cray YMP license, allows 4 concurrent

users on each SGI file server and 16 users on the YMP to use this software. IPT agrees to

offer this package for $31,150, at a 44.3% discount of the full price ($47,400).

6. I The NAGWare F77 Tools Licensing Schemes

There are two licensing schemes available on this product from NAG. Each scheme

consists of an one-time initial license fee and a yearly maintenance fee thereafter. The

yearly maintenance fee is 18% of the initial license cost. This maintenance fee will continue

the technical support from NAG and automatic software upgrades. Figure 20 is the cost

schedule for these schemes. Source license to this product is not an option.

The first one is the "per CPU" licensing scheme, in which the license fee depends strictly

on the number of CPUs involved. One license costing $3,895 is required for each CPU.

For example, if NAS has 115 SGI workstations, 115 licenses are required. The total

license cost for 115 SGI workstations (with a volume discount) is $71,395.00 and the

maintenance cost is $10,710.00 per year. Since there are more than 150 workstations at

NAS, it is more cost effective to use the network server license scheme.

13

The cost of the network server license scheme is based on the number of network servers

plus the number of concurrent users. A 20-concurrent-user license for one SGI

workstation costs $10,877.00 ($3,895 + $6,982). The yearly maintenance cost is

$1,957.86. This software is also available for the Cray YMP super computer, but in a

different classification. The base price is offered at $6,995 and a 20-concurrent-user

license costs $13,977.

License Number of 1 user < 5 users < 10 users < 15 users < 20 users

Type CPUs/Servers ($1,995) ($3,657) ($5,320) ($6,982)

SGI 1 $3,895 $5,890 $7,552 $9,215 $10,877

Network 2 $7,790 $9,785 $11,447 $13,110 $14,772

Server 3 $11,685 $13,680 $15,342 $17,005 $18,667

License 4 $15,580 $17,575 $19,237 $20,900 $22,562

CrayYMP 1 $6,995 $8,990 $10,652 $12,315 $13,977

Figure 20. NAGWare F77 Tools Price Schedule.

7.0 Recommendations

During the Fortran-lint evaluation, the SGI-Cray license package (six 4-user and unlimited-

CPU SGI file server licenses and one 16-user Cray YMP license) offered by IPT costing

$31,150 was recommended. This recommendation was made before the Support

Processors Systems (SPS) and the Ultra Network were available. Users now can take

advantages of the exceptional processing power of the SPS and the Ultra network on the

SPS. Data can be transferred to the SPS over the Ultranet at a rate of 2 Gigabits per second

for analysis on the SPS. The network transfer rate will no longer be an issue.

Although the Fortran-lint SGI-Cray package (as in the cost comparison, below) offers the

lowest per-active-user cost, this scheme is not recommended. Using the Cray YMP as a

processing unit for source code analysis is a waste of the computing resources of the

supercomputers. The Cray computers should be used for more complex analysis. Fortran

source code analysis should be performed on the SPS. Therefore, it is recommended that

only the SPS should be considered as a candidate for these Fortran source code analyzers.

14

Software Licensing Scheme Total Cost Per Active

Package User Cost

Fortran-lint One 16-user, 200-CPU SGI Server License $21,900.00 $1,368.75

One SGI-Ch'ay licenses package at a 50%

discount rate (six 4-user and unlimited-CPU

SGI file server licenses and one 16-user Cray

YMP license).

$31,150.00 $ 778.75

NAGWare Four 15-user SGI Server License $20,900.00 $1,306.25

One SGI-Cray license package (4 15-user

SGI server licenses and a 15-user Cray YMP

license)

$33,115.00 $1,103.83

Figure 21. IPT Cost Schedule versus the NAGWare F77 Tools Cost schedule

Figure 21 shows that the total cost of the server license and the package licenses of Fortran-

lint versus NAGWare are reasonably close; therefore, pricing is not the deciding factor.

The functionality of each tool suite becomes more important.

A summary of the features and the costs of the NAGWare F77 Tools and the IPT Fortran-

lint tools can be found in Figure 22. Please also refer to [3] for details of this product. The

major differences between these tools are:

• The NAGWare tools differ from IPT Flint in that they provide transformation tools

to convert Fortran 77 programs. These tools are extremely practical in porting,

standardizing and restructuring of Fortran 77 programs. Although users can

perform the same task using "awk," "sed" and the "vi" editor etc., these manual

operations are prone to errors. The NAGWare transformation tools can be used to

make repetitive changes to code easy, and eliminate errors introduced by "hand

editing." This is the problem area of Flint. Flint only reports problems and does

not provide tools to correct them. It relies on users to correct problems manually.

This is the main disadvantage of Fortran-lint.

• Both the NAGWare tools and IPT Fortran-lint provide complete documentation,

tutorials, and installation procedures. Both tools are easy to install and

administrate.

15

NAGWareF77Tools IPT Fortran-lint

Documentation On-linemanualpagesand On-linemanualpagesand

easyto follow tutorial easyto follow tutorial
Installation

TransformationTools

AnalysisTools

Easy, no installation tools

required

Easy, equipped with

installation script

• Pretty Printer

• Restructurer

• Precision Transformer

• Name Changer

• Declaration Standardizer

• Options File Editor

None

Call Tree Analysis

Portability Analysis

(F77 ANSI X3.9-1978)

• Syntax Analysis

• Call interface Analysis

• Data Usage Analysis

Call Tree Analysis

Portability Analysis

(F77 ANSI X3.9-1978)

• Syntax Analysis

• Call Interface Analysis

• Data Usage Analysis

• Symbols Table Analysis

• Reference Table Analysis

Error messages

Platforms

Licensing Scheme

Cost

Appropriate

SGI, SUN & Cray YMP

Per CPU, per user

$20,900

More Precise

SGI, SUN & Cra_, YMP

Per CPU, per user

$21,900

Figure 22. Comparison of NAGWare F77 Tools and the IPT Fortran-lint

• On the other hand, Igr Flint produces detailed symbol tables and reference table for

data reference checks; that is beyond the NAGWare tools' capability. These tables

provide a comprehensive data usage and reference analysis, which helps users to

locate data usage problems easily. The NAGWare tools do not provide these tools

but still perform appropriate source code analysis.

• The NAGWare tools produce appropriate output messages, but the Fortran-lint

messages are more accurate and direct. This is only a minor factor.

16

The NAGWare F77 Tools and the IPT Fortran-lint basically perform similar functions in

Fortran 77 source code analysis. This analysis includes checks for syntax errors, data

usage errors and interface errors. Both tools performed satisfactorily in the Fortran 77

portability check. The NAGWare F77 Tools out-performed the IPT Fotran-Lint because of

the transformation tools. Although the Flint symbols tables are particularly useful,

experienced Fortran programmers could use the Fortran debugger for data usage checks

effectively. Therefore, these symbols table and reference table are useful but not critical to

users.

One difficulty in this evaluation is that NAS users' requirements on the Fortran

development environment were not clear. In order to identify these requirements, several

NAS scientists and Fortran programmers have been selected to participate in the NAGWare

evaluation. Messages have also been broadcast on the SPS to welcome all other users'

participation.

After a two-month evaluation period, it was found that the NAS users' general interest in

these tools is limited. Only a few users have actually used it. The selected group of users

have also reflected the same opinion. Users' comments on the NAGWare are:

"The NAGWare Source Code Analyzer does not provide more help in

development and debugging of Fortran software than the conventional

Fortran compiler and debugger do."

"The ideals of these NAGWare tools are promising but the software is

unstable in its current state. It is not consistent in complex analysis. The

NAGWare can improve in data checking, inter-program communication

checking, floating point conversion and documentation. The capability of

mixed languages analysis is helpful too."

"Users may prefer a CASE solution, such as the Saber C which is a C

development environment integrated with editor, debugger and Source Code

Control program. The CASE tool for the Fortran development environment

should consist of an easy-to-use editor and a easy-to-use debugger, a

17

FortranSourceCodeAnalyzer,aswell asConfigurationManagementtools
etc."

Becauseof the limited interestin theNAGWareF77Tools, it is recommendedthat this

softwarenotbepurchased.Thereasonsfor thelackof interestin thisproductarethatthese

toolsdo notmeettherequirementsof theusers.Although thereis adevelopmentinterest

expressedby theHSPgroup,it doesnotjustify theacquisitionof thisproduct.

8.0 Conclusion

The evaluations of the NAGWare F77 Tools and the Information Processing Techniques

Fortran-lint source code analyzer are finalized. These software packages perform similar

tasks in the ANSI Fortran 77 source code conformance analysis. The IPT Flint is capable

of producing detailed symbols table for data reference checks; while the NAGWare tools

provide transformation tools which are particularly useful in source code restructuring and

standardization.

Although these Fortran development tools seemed promising, an internal survey has shown

that users' interest in these tools is limited. Therefore, it is recommended that neither the

NAGWare F77 Tools nor the IPT Fortan-Lint be purchased unless a need for these tools is

identified at a later time.

18

Reference

[1] "NAGWare F77 Tools", Numerical Algorithms Group, Inc., Commercial Publication,

April 1991.

[2] Baker, Brenda S., "An Algorithm for Structuring Flowgraphs," [1977]. J. ACM 24, 1

(January 1977), 98-120.

[3] Lam, Terance "Information Processing Techniques Fortran-lint (Fortran 77 Source

Code Analyzer) Evaluation", NASA Ames RND Report ???, June, 1991

19

20

